896 research outputs found

    Color and Variability Characteristics of Point Sources in the Faint Sky Variability Survey

    Get PDF
    We present an analysis of the color and variability characteristics for point sources in the Faint Sky Variability Survey (FSVS). The FSVS cataloged ~23 square degrees in BVI filters from ~16--24 mag to investigate variability in faint sources at moderate to high Galactic latitudes. Point source completeness is found to be >83% for a selected representative sample (V=17.5--22.0 mag, B-V=0.0--1.5) containing both photometric B, V detections and 80% of the time-sampled V data available compared to a basic internal source completeness of 99%. Multi-epoch (10--30) observations in V spanning minutes to years modeled by light curve simulations reveal amplitude sensitivities to 0.015--0.075 mag over a representative V=18--22 mag range. Periodicity determinations appear viable to time-scales of an order 1 day or less using the most sampled fields (~30 epochs). The fraction of point sources is found to be generally variable at 5--8% over V=17.5--22.0 mag. For V brighter than 19 mag, the variable population is dominated by low amplitude (<0.05 mag) and blue (B-V<0.35) sources, possibly representing a population of gamma Doradus stars. Overall, the dominant population of variable sources are bluer than B-V=0.65 and have Main Sequence colors, likely reflecting larger populations of RR Lyrae, SX Phe, gamma Doradus, and W UMa variables.Comment: 34 pages, 16 figures, accepted in A

    Most Sub-Arcsecond Companions of Kepler Exoplanet Candidate Host Stars are Gravitationally Bound

    Get PDF
    Using the known detection limits for high-resolution imaging observations and the statistical properties of true binary and line-of-sight companions, we estimate the binary fraction of {\it Kepler} exoplanet host stars. Our speckle imaging programs at the WIYN 3.5-m and Gemini North 8.1-m telescopes have observed over 600 {\it Kepler} objects of interest (KOIs) and detected 49 stellar companions within \sim1 arcsecond. Assuming binary stars follow a log-normal period distribution for an effective temperature range of 3,000 to 10,000 K, then the model predicts that the vast majority of detected sub-arcsecond companions are long period (P>50P>50 years), gravitationally bound companions. In comparing the model predictions to the number of real detections in both observational programs, we conclude that the overall binary fraction of host stars is similar to the 40-50\% rate observed for field stars

    Controlled synthesis of superparamagnetic iron-oxide nanoparticles by phase transformation

    Get PDF
    A synthesis procedure for generating a uniform distribution of iron-oxide nanoparticles from an amorphous precursor is reported. The investigation suggests no evidence of the formation of unwanted surface oxide layers, internal stress, and multiple phases. This is likely because the physical properties of the diffusion fields surrounding the nanoparticles are self-limiting by Fe(II) depletion. Inside the diffusion field surrounding the nucleation site, decreasing Fe(II) concentration results in a decrease in the diffusion rate that continues to decrease until self-limiting kinetic arrest occurs. The initial Fe(II) concentration is established by reducing a system abundant in Fe(III) by means of exposure to CO/CO2 gas at high temperature

    Speckle Camera Observations for the NASA Kepler Mission Follow-up Program

    Get PDF
    We present the first results from a speckle imaging survey of stars classified as candidate exoplanet host stars discovered by the Kepler mission. We use speckle imaging to search for faint companions or closely aligned background stars that could contribute flux to the Kepler light curves of their brighter neighbors. Background stars are expected to contribute significantly to the pool of false positive candidate transiting exoplanets discovered by the Kepler mission, especially in the case that the faint neighbors are eclipsing binary stars. Here, we describe our Kepler follow-up observing program, the speckle imaging camera used, our data reduction, and astrometric and photometric performance. Kepler stars range from R = 8 to 16 and our observations attempt to provide background non-detection limits 5-6 mag fainter and binary separations of ~0.05-2.0 arcsec. We present data describing the relative brightness, separation, and position angles for secondary sources, as well as relative plate limits for non-detection of faint nearby stars around each of 156 target stars. Faint neighbors were found near 10 of the stars

    A Search for Variable Stars and Planetary Occultations in NGC2301 I: Techniques

    Full text link
    We observed the young open cluster NGC 2301 for 14 nights in Feb. 2004 using the orthogonal transfer CCD camera (OPTIC). We used PSF shaping techniques ("square stars") during the observations allowing a larger dynamic range (4.5 magnitudes) of high photometric precision results (\le2 mmag) to be obtained. These results are better than similar observing campaigns using standard CCD imagers. This paper discusses our observational techniques and presents initial results for the variability statistics found in NGC 2301. Details of the variability statistics as functions of color, variability type, stellar type, and cluster location will appear in paper II

    On the physics of frequency domain controlled source electromagnetics in shallow water, 2: transverse anisotropy

    Get PDF
    Author Posting. © The Authors, 2017. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 211 (2017): 1046–1061, doi:10.1093/gji/ggx360.In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically-polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the sub-seafloor conductivity that is assumed to be transversely anisotropic, with a vertical-to-horizontal resistivity ratio of 3:1. For an ocean whose electrical thickness is comparable to that of the overburden, the seafloor electromagnetic response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a halfspace, or a stronger and faster response, and displays little to no evidence for the air interaction. For an ocean whose electrical thickness is much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets, and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. By comparison to the isotropic case with the same horizontal conductivity, transverse anisotropy stretches the Poynting vector and the electric field response from a thin resistive layer to much longer offsets. These phenomena can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire sub-seafloor resistivity structure with the sea surface. The Fréchet derivatives are dominated by preferential sensitivity to the vertical conductivity in the reservoir layer and overburden at short offsets. The horizontal conductivity Fréchet derivatives are weaker than to comparable to the vertical derivatives at long offsets in the substrate. This means that the sensitivity to the horizontal conductivity is present in the shallow parts of the subsurface. In the presence of transverse anisotropy, it is necessary to go to higher frequencies to sense the horizontal conductivity in the overburden as compared to an isotropic model with the same horizontal conductivity. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.This work was supported at WHOI by an Independent Research and Development award, and by the Walter A. and Hope Noyes Smith Chair for Excellence in Oceanography
    corecore